
1 

 

Automatic post-picking using MAPPOS 
improves particle image detection from Cryo-
EM micrographs 

Ramin Norousi
1,5

, Stephan Wickles
2,5

, Christoph Leidig
2
, Thomas Becker

2
, Volker 

J. Schmid
1
, Roland Beckmann

2
, Achim Tresch

3,4
 

1
Department of Statistics, Ludwig-Maximilians-University München, Germany 

2
Center for Integrated Protein Sciences and Munich Center for Advanced Photonics at the Gene 

Center, Department of Biochemistry, Ludwig-Maximilians-University München, Germany 

3
Max Planck Institute for Plant, Breeding Research, Cologne, Germany 

4
Institute for Genetics, University of Cologne, Cologne, Germany 

5
authors contributed equally to the work 

 

Send correspondence to: tresch@mpipz.mpg.de, ramin@norousi.de, wickles@lmb.uni-

muenchen.de  

 

KEYWORDS: Electron Microscopy, Particle Picking, Machine Learning, Classification 

Ensemble, 3D cryo-EM density map 

ABSTRACT 

Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction are extensively 

used to reveal structural information on macromolecular complexes. Aiming at the highest 

achievable resolution, state of the art electron microscopes automatically acquire thousands of 

high-quality micrographs. Particles are detected on and boxed out from each micrograph using 

fully- or semi-automated approaches. However, the obtained particles still require laborious 

manual post-picking classification, which is one major bottleneck for single particle analysis of 

large datasets. We introduce MAPPOS, a supervised post-picking strategy for the classification 

of boxed particle images, as additional strategy adding to the already efficient automated particle 

picking routines. MAPPOS employs machine learning techniques to train a robust classifier from 

a small number of characteristic image features. In order to accurately quantify the performance 

of MAPPOS we used simulated particle and non-particle images. In addition, we verified our 
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method by applying it to an experimental cryo-EM dataset and comparing the results to the 

manual classification of the same dataset. Comparisons between MAPPOS and manual post-

picking classification by several human experts demonstrated that merely a few hundred sample 

images are sufficient for MAPPOS to classify an entire dataset with a human-like performance. 

MAPPOS was shown to greatly accelerate the throughput of large datasets by reducing the 

manual workload by orders of magnitude while maintaining a reliable identification of non-

particle images. 

INTRODUCTION   

The 3D cryo-electron microscopy (cryo-EM) reconstruction is a widely used and powerful 

technique for structural analysis of biological macromolecular assemblies. Due to the bad signal-

to-noise-ratio (SNR) in low-dose cryo-EM, tens of thousands of 2D grayscale projections of a 

macromolecule (referred to as particles) are required to reconstruct its 3D structure (Woolford et 

al., 2007). The success of the reconstruction crucially depends on the number and the quality of 

2D particle images. Non-particle images – i.e. ice, dust, contaminations, or empty images (noise) 

– in a dataset can lead to severe distortions in the result, including erroneous electron densities. 

Facing this problem, great efforts were made to accurately pick particles from the low-dose 

electron micrographs generated during cryo-EM. Excellent particle picking methods have been 

developed (Nicholson and Glaeser, 2001) and evaluated (Zhu et al., 2004). These methods can be 

divided into three categories according to the algorithms they use (Zhu et al., 2004): generative, 

discriminative, and unsupervised approaches. Generative approaches measure the similarity 

between regions of the micrograph and 2D projections of a reference structure. Most of these so-

called template-matching techniques use cross-correlation as a similarity score (Chen and 

Grigorieff, 2007; Hall and Patwardhan, 2004; Huang and Penczek, 2004; Roseman, 2003). 

Instead of an initial reference structure discriminative methods require a training dataset, which 

contains positive and negative samples. According to these samples, a binary classifier is trained. 

This can be done either fully supervised using statistical learning (Hall and Patwardhan, 2004; 

Mallick et al., 2004; Volkmann, 2004) or machine learning (Arbelaez et al., 2011) approaches, or 

in an iterative, supervised fashion (Sorzano et al., 2009) allowing the user to correct the algorithm 

during the training phase. The category of unsupervised approaches entails algorithms that work 

without any reference. Particles are automatically detected based on statistical measures and 

features that are extracted directly from the micrograph (Adiga et al., 2005; Ogura and Sato, 
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2004; Roseman, 2003; Shaikh et al., 2008; Voss et al., 2009; Woolford et al., 2007; Zhu et al., 

2004). All of these approaches focus on the optimization of correct particle detection on 

micrographs. These methods yield sets of boxed images whose quality depends on the signal-to-

noise ratio of the micrograph, the picking method and the observed specimen. This can result in 

fractions of 10% to more than 25% of inadvertently selected particle images (Zhu et al., 2004). 

Although automated particle picking methods are invaluable for processing large cryo-EM 

datasets, subsequent manual curation is, therefore, still inevitable and now constitutes one major 

bottleneck for high resolution reconstruction of unsymmetrical particles. 

Since the task of particle picking is distinct from the task of discriminating particles and non-

particles in a collection of individual boxed images of standardized size we reasoned that both 

tasks should be addressed in individual steps. We propose to subject the output of automated 

particle picking methods to a specialized round of classification to separate particle images from 

non-particle images. To achieve this task we established MAPPOS (Machine learning Algorithm 

for Particle POSt-picking), a supervised discriminative post-picking method based on 

characteristic features calculated from the boxed images. Using MAPPOS, the manual curation 

step is reduced to the creation of a small training dataset that is then used to generate an ensemble 

of binary classifiers (Hansen and Salamon, 1990). Subsequently, this ensemble classifier can be 

applied to automatically sort a complete dataset. We used a simulation environment for the 

generation of realistic particle and non-particle images. With this controlled environment we had 

a tool at hand to accurately quantify the quality of post-picking classifications and used it to 

assess the performance of MAPPOS and compare it to the manual performances of experienced 

researchers (referred to as human experts). 

MATERIALS AND METHODS 

Simulation of a Cryo-EM Dataset 

To develop and evaluate MAPPOS we required a synthetic yet realistic data environment. We 

generated 21,922 boxed images with a particle to non-particle ratio of 9:1, which is comparable 

to that of real cryo-EM datasets. The images were generated by projecting various 3D volumes 

into 2D. To resemble real cryo-EM images in fundamental properties – like their SNR and their 

image contrast modulated by the contrast transfer function (CTF) – all of the generated images 

were modified using a previously described image manipulation procedure (Baxter et al., 2009) 
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(Fig. 1a). First, the structural noise present in real datasets was simulated by the addition of 

random noise with zero-mean Gaussian distribution to a SNR of 1.4. Second, the image 

formation of a bright field microscope at an acceleration voltage of 300kV and a defocus of 2.0 

µm was simulated by modulation of the images with the corresponding contrast transfer function 

(CTF). Third, random noise (shot and digitization) of zero-mean Gaussian distribution was 

applied to a SNR of 0.05. In a final step, the simulated images were low-pass filtered to reduce 

the noise using a Butterworth filter between 20 and 50 Å. Low-pass filtering of micrographs or 

boxed images is routinely used during standard cryo-EM processing procedures to improve the 

visibility of the particles and, therefore, allow for better initial particle picking from micrographs 

or classification of boxed images (Shaikh et al., 2008). Particle images were projected from the 

crystal structure of the E. coli 70S ribosome (PDB: 2QAL & 2QAM (Borovinskaya et al., 2007)). 

Non-particle images were generated from four different 3D templates: plate, cylinder, sphere and 

void (Fig. 1b). These templates were chosen such that they covered the spectrum of 

contaminations typically encountered in cryo-EM datasets (Fig. 1c). 

 

Figure 1. Simulation of cryo-EM boxed images. (a) Generation of an artificial cryo-EM image based on a crystal 

structure of the E. coli 70S ribosome (PDB: 2QAL & 2QAM). A 2D projection of the ribosomal electron density is 

modified by (i) addition of structural noise to account for structural heterogeneity, (ii) distortion with a CTF to 

simulate the image of a bright field electron microscope at a negative defocus value, (iii) addition of noise to a SNR 

of 0.05 to simulate low dose conditions, and (iv) low-pass filtering to improve the contrast as routinely done during 

standard cryo-EM image processing. (b, c) Comparison of experimental cryo-EM images (b) to our artificial 

projection images (c). Projections from different angles of the E.coli 70S ribosome (row 1) and four types of 

contaminations commonly found in cryo-EM datasets (rows 2-4) are shown. Various 3D volumes (middle 

column) were used to generate the artificial (non-)particle images. 
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Testing of Discriminatory Features 

MAPPOS is based on the extraction of distinct features that enable discrimination of particle and 

non-particle images. Potential discriminatory features were tested individually on a dataset of E. 

coli 70S ribosomes that comprised 1,638 manually classified images with a 1:1 ratio of particles 

to non-particles. The discriminatory power of each feature was assessed by its receiver operating 

curve (ROC) and the associated area under curve (AUC), providing a balanced measure of its 

sensitivity and specificity (Bradley, 1997; Fawcett, 2006; Langlois and Frank, 2011). 

Description of Individual Discriminatory Features 

Radially Weighted Average Intensity (AUC-value = 0.83). The radially weighted average 

intensity is calculated as a weighted sum of the pixel intensities. The weighting is inversely 

proportional to a pixel’s Euclidean distance from the image center. This measure for the 

centrality of bright pixels was found to assume higher values for particle images than for non-

particle images. 

Phase Symmetry / Blob Detection (AUC-value = 0.94). Blob detection is based on the concept 

of phase symmetry, a contrast- and rotation invariant measure of local symmetry at each point of 

an image. Phase symmetry recurs on a 2D Wavelet transformation that extracts local frequency 

information (Morlet et al., 1982). Phase symmetry transformation is applied with standard 

parameter settings as in (Kovesi, 1997). The transformed image is then binarized using Otsu’s 

thresholding (Otsu, 1979). Subsequently, locally symmetric areas (blobs) can be counted. They 

were found to be mainly occurring in non-particle images (Fig. 2). 

 

Figure 2. Phase symmetry transformation and binarization. A particle image (top row) and a non-particle image 

(bottom row) are depicted in their original states (left column), after phase symmetry transformation (middle 
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column), and after binarization (right column). The non-particle image contains an overall higher degree of 

symmetry and contains more white pixels after binarization. 

 

Dark Dot Dispersion (AUC-value = 0.86). Images are convolved with a 2-dimensional 

symmetric Gaussian kernel. Afterwards they are binarized using the 95%-quantile of the image 

pixel intensity distribution as a threshold value. Connected regions of these pixels are referred to 

as dark dots. The center of a dark dot is determined as the mean of its pixel coordinates and the 

dark dot dispersion of an image is defined as the variance (mean squared Euclidean distance) 

between the centers of its dark dots. We observed that the average distance between dark dots is 

larger in particle images than in non-particle images. 

 

Creation of an Ensemble Classifier 

MAPPOS uses ensemble learning principles to construct ensemble classifiers from a set of 

individual classifiers. An ensemble classifier consists of a set of k elementary independent 

classifiers (C1,…,Ck) for an identical classification problem. The k binary predictions are 

combined to one final prediction by choosing the prediction made by the majority of the 

individual classifiers (Hansen and Salamon, 1990). An ensemble classifier generally yields an 

improved classification accuracy compared to each individual classifier (Duda et al., 2000). We 

implemented the bootstrap aggregating or ‘bagging’ approach (Breiman, 1996) for the 

construction of an ensemble. Prior to the learning procedure – to later assess the performance of 

the final ensemble classifier as unbiased as possible – a validation set comprising 10% of the 

training data is held aside. Once the final classifier is constructed, its performance is evaluated on 

the validation set. The k elementary classifiers are iteratively selected out of a basic variety of 

classifiers and parameter settings. To that end, the remaining 90% of the training data are 

randomly split 5 times by subsampling an inner training set (80%) and an evaluation set (20%). 

We start with a set of (40 – 60) candidate classifiers selected from a variety of basic methods 

such as linear discriminant analysis (Mika et al., 1999), decision trees (Quinlan, 1986), support 

vector machines (Vapnik, 1995), and n-nearest-neighbors (Cover and Hart, 1967). Each candidate 

classifier is equipped with parameters randomly drawn from an appropriate range. The candidate 

classifiers are trained 5 times using the 5 inner training sets, respectively. Subsequently, they are 

applied to the corresponding 5 evaluation sets, and the classifier which performs best is added to 
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the classifier ensemble. This process is iterated until no improvements can be made by the 

addition of another classifier (Wichard, 2006). In our case, the final classification ensemble 

contained 21 elementary classifiers. 

 

Figure 3. Workflow of MAPPOS. A training dataset is created by manual classification of T sample images 

(typically, T≈1,000) as particles or non-particles labeled (+) or (-), respectively. During the training phase, p 

discriminatory features (f1
j,…,fp

j) are automatically extracted from each sample image j. The feature matrix (fk
j) is 

used in combination with the sample labels to train an ensemble classifier. The ensemble classifier is used during the 

prediction phase to efficiently classify all of the S images (typically, S≈105-106>>T) of the complete dataset. 

 

Data Acquisition 

E. coli 70S ribosomes were prepared as previously described in (Burma et al., 1985). In short, a 

crude ribosomal fraction was further purified using a liner 10-40% sucrose gradient. The 

monosomal fraction was then applied to carbon-coated holey grids. Micrographs were recorded 

under low-dose conditions (about 20 e
-
 per Å

2
) on a Titan Krios TEM (FEI Company) 

microscope at 300 kV at a magnification of 128,200× using an Eagle 4k × 4k CCD camera (FEI 

Company, 4,096 × 4,096 pixel, 15 μm pixel, 5 s/full frame) in a negative defocus range of 1.0–3.5 

μm. The resulting pixel size was 1.17 Å on the object scale. 

Data were collected using the semi-automated software EM-TOOLS (TVIPS GmbH). This 

allowed manual selection of appropriate grid meshes and holes in the holey carbon film. During 

acquisition, the software automatically performed a re-centering, drift and focus correction before 

the final spot scan series were taken. Long-term TEM instabilities in beam shift, astigmatism and 

coma were corrected by EM-TOOLS in regular intervals (for example, every 45 min). 

Validation 
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The performance of MAPPOS was evaluated on simulated and experimental datasets featuring E. 

coli ribosomes as particles. The experimental cryo-EM data comprised 85,726 boxed images of 

empty E. coli 70S ribosomes which were automatically picked by Signature (Chen and 

Grigorieff, 2007) using a template matching algorithm. The artificial datasets were obtained from 

simulated boxed images. Each of them comprised a set of 19,874 particle images and 2,048 non-

particle images. The particles were randomly selected from the projections of the E. coli 

ribosome. We analyzed five scenarios with different non-particle sets. We either exclusively used 

plate, cylinder, sphere or void projections (see Fig.1), or a uniform mixture of projections of all 

these types. 

For the simulated dataset the images were unambiguously known to contain particles or non-

particles, respectively. For the experimental dataset the correct labels were assigned manually. A 

set of 2,000 images (particle to non-particle ratio of 1:1) was used as a training set for automated 

classification by MAPPOS, respectively. We compared three methods, (i) manual post-picking, 

(ii) no post processing and (iii) post-picking with MAPPOS. Standard performance measures 

were calculated for 2x2 contingency tables of true vs. predicted labels (Langlois and Frank, 

2011). In addition, we assessed the quality of the resulting electron density map for the 

experimental dataset. Besides classification performance, we assessed the effects of the different 

post-picking results on the quality of the resulting electron density maps. All datasets were 

processed using SPIDER (Frank et al., 1996) and refined for 3 rounds to final resolutions of 

about 11 Å corresponding to the Fourier-shell correlation = 0.5 (FSC0.5) criterion. 

RESULTS 

MAPPOS 

MAPPOS is a simple yet effective tool that has been implemented in MATLAB (version 6.0 or 

greater). It requires the image processing toolbox and the statistics toolbox as add-on packages. 

The source code for MAPPOS is freely available for academic use. It can be downloaded from 

http://www.treschgroup.de/mappos.html. A detailed step-by-step instruction for MAPPOS is 

provided in the Supplementary Material. 

MAPPOS Relies on Seven Features for Image Classification 

We set out to develop a fast and reliable classification method for post-picking of boxed cryo-EM 

images into particles and non-particles. To achieve a high robustness we avoid any user-
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adjustable parameters, thereby minimizing the risk of over-fitting. We tested a number of 

discriminatory features for applicability to this problem and identified 7 well-performing features 

that constitute the input to MAPPOS: (i) location and scale (mean, variance), (ii) the (0%, 10%, 

50% ,90% ,100%)-quantiles of the pixel intensity distribution, (iii) the number of foreground 

pixels after binarisation using Otsu’s thresholding (Otsu, 1979), (iv) the number of edges counted 

after Canny edge detection (Canny, 1986) (see Supplementary Material), (v) the radially 

weighted average intensity, (vi) phase symmetry / blob detection, and (vii) dark dot dispersion. 

Discriminatory features (v) to (vii) are described in more detail in the Materials and Methods 

section. 

 Classification by MAPPOS is dependent on the availability of a relatively small set of sample 

images (training dataset) that have been labeled as particles (+) or non-particles (-) and can be 

divided into a learning phase and a particle detection (prediction) phase (Fig. 3). During the 

learning phase MAPPOS uses the training dataset to create an ensemble classifier from a pool of 

elementary classifiers (see Materials and Methods). This ensemble classifier is then used during 

the particle detection phase to classify an entire dataset.  

MAPPOS Classifies Boxed Images with High Speed 

The learning of the ensemble classifier from a training dataset containing 2,000 images takes 

about 75 seconds on a standard PC (Intel Core Duo 2x2.00 GHz; 2 GB RAM). During the 

detection phase, images are classified with a speed of 0.3 seconds per image or 12,000 images per 

hour. 

Performance in a Simulated Data Environment 

Non-particle contaminations in cryo-EM datasets can severely impair the quality electron density 

map reconstructions. Taking into account that contemporary automated data collection 

approaches typically provide an excess of raw data, we focused on a high detection rate for non-

particles during the development of MAPPOS – at the expense of also removing some particles 

along the way. In terms of quantifiable measures we were trying to maximize the positive 

predictive value (PPV) and the specificity (Langlois and Frank, 2011) while accepting a lower 

sensitivity in return (see Table 1 for definitions). 

Each of the five simulation scenarios (see Methods) was run 100 times, and each run provided a 

vector (TP, FP, TN, FN) of true positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN) as its result. The specificity and sensitivity (as well as their mean and 
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variance values) for each scenario were derived from these values (Table 1). Specificity values 

were above 70% in all scenarios, reaching a maximal value of 86% for the cylinder scenario and 

a value of 74% for the mixed scenario. Sensitivity values were around 80% with the exception of 

the cylinder scenario with a value of 87%. 

 

Table 1. Performance of MAPPOS in different test scenarios. A set of 1,000 particles and 1,000  non-particles 

was used for training in each case. For self-containedness, we provide a definition of the performance scores 

proposed by (Langlois and Frank, 2011) for the comparison of particle picking methods. Classification results on the 

test set were compared to the known labels, splitting the samples into correctly classified particles (true positives, 

TP), correctly classified non-particles (true negatives, TN), incorrectly classified non-particles (false positives, FP), 

and incorrectly classified particles (false negatives, FN). Quantities that are derived from these numbers are the 

sensitivity (=TP/(TP+FN)), specificity (=TN/(TN+FP)), and positive predictive value (PPV=TP/(TP+FP)). 

 

MAPPOS Performs Comparable to Human Experts  

MAPPOS was compared to 7 human experts using a simulated dataset of 2,048 images 

comprising 1,638 particles and 410 mixed non-particles. We trained MAPPOS with two different 

training datasets. The first one comprised 500 true particles and 500 true non-particles, while the 

second one comprised 500 particles and 500 non-particles that were randomly chosen from the 

classified particles of the best-performing human expert. The results were analyzed according to 

sensitivity and specificity (Fig. 4). Notably, the performances of the human experts were highly 

variable. The results achieved by MAPPOS were comparable to those of the best-performing 

human experts. When trained with the first training dataset, MAPPOS scored the 2
nd

 best 

specificity, achieving 79% specificity and 81% sensitivity. When trained with the random images 

obtained from the human expert, the specificity (67%) was still above average, while the 

sensitivity (85%) increased considerably. We analyzed the individual classified particles 

according to the types of non-particles that were detected with high or low reliability, 
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respectively. MAPPOS agreed best with the two most accurate (specificity) human experts, and, 

when MAPPOS was trained by a human expert, it mimicked this expert’s classification behavior 

(Fig. 5 and data not shown). 

 

Figure 4. Comparison between MAPPOS and human experts. Sensitivity and specificity values of 7 human 

experts (circles), MAPPOS trained by the best-performing human expert (square) and MAPPOS trained with true 

particles and non-particles (rhombus) are shown. 

 

 

 

Figure 5. Effect of training dataset size on MAPPOS performance. The PPV (left) and the sensitivity (right) of 

MAPPOS were tested on experimental cryo-EM data of the E. coli 70S ribosome sample using various training 

dataset sizes (x-axis). Each box summarizes the results of 100 replicate in silico experiments. Each box spans the 

central range of the data (1st-3rd quartile) while the black lines inside the boxes indicate the respective medians. The 
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whiskers mark the 3-fold inter-quartile range. The fold reduction of the number of non-particles in the dataset (y-

axis) is indicated for the PPV. 

 

 

Performance with Experimental Cryo-EM Data 

Particles were picked from micrographs containing E. coli 70S ribosomes using Signature (Chen 

and Grigorieff, 2007) and subsequently classified by MAPPOS. The same particles were 

manually inspected and classified by a human expert. First, we investigated the PPV and 

sensitivity as a function of the training dataset size (Fig. 5). Both, sensitivity and PPV increased 

with the size of the training dataset. The maximal PPV was already achieved with a training 

dataset of only 1,000 images. The increase of the PPV from 86% (PPV of Signature with manual 

classification as the reference) to 94% after post-picking by MAPPOS corresponds to a 

substantial reduction of the fraction of false positives by a factor of about 2.5. Second, as an 

additional measure of performance, we evaluated the quality of the electron density maps 

reconstructed from the MAPPOS or human expert datasets in terms of structural features that 

were clearly resolved. We used the backprojection of the crystal structure of the E. coli 70S 

ribosome and a reconstruction based on the unclassified dataset as a positive and a negative 

control, respectively. According to Fourier-Shell correlation the resolution of the reconstructions 

was comparable in all cases; however, there were obvious differences in the quality of the density 

maps. Considering the ribosome, the and, later on, β-sheets. One of the evaluated regions was the 

ribosomal tunnel exit at the ribosomal proteins L29 and L23 (Fig. 6). No separation between 

rRNA and protein densities was observed in the negative control. Accordingly, no information on 

protein secondary structure information could be obtained. The reconstructions of the dataset 

classified by MAPPOS as well as the manually inspected dataset provide information on the 

localization and secondary structure of proteins. The α-helices of L29 and L23 are almost 

completely resolved. Our results illustrate how post-picking of automatically selected particles 

from cryo-EM micrographs can lead to improved electron density maps, and that post-picking by 

MAPPOS is on par with manual particle inspection. 
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Figure 6. Effect of different post-picking classification strategies on cryo-EM reconstructions. A ribbon 

representation (red: ribosomal proteins; blue: rRNA) of a crystal structure of the E.coli 70S ribosome (PDB: 2QAL 

& 2QAM) was fitted in all electron density maps (grey). The electron density map projected from the crystal 

structure of the E. coli 70S ribosome  and filtered to 10 Å resolution serves as a reference (top left). Secondary 

structure elements, e.g. protein α-helices of L29, are resolved in the reconstruction of the manually classified dataset 

(bottom left) as well as in the reconstruction of the dataset classified by MAPPOS (top right). In contrast, no 

secondary structure information is resolved in the reconstruction of the unclassified dataset (bottom right). 

DISCUSSION 

We introduced MAPPOS, an automated image classification method that reduces the manual 

workload of particle post-picking by orders of magnitude while maintaining a reliable 

classification quality. We used the example of the E. coli ribosome to demonstrate that the quality 

of the electron density map after reconstruction from an automatically classified dataset is equal 

to that of a manually classified dataset. 

When compared to human experts, MAPPOS achieved a performance similar to the best-

performing human experts. Notably, the performances of the human experts varied considerably 

(Fig. 5). An obvious concern resulting from this observation is that MAPPOS cannot perform 

better than the user that classified the training dataset. However, in the light of large datasets, it is 

easier for a user to thoroughly assemble a good training dataset than to uniformly judge all of the 

boxed images with constant high quality. It is exactly this task where MAPPOS outperforms 

manual classification by impartially applying the same criteria to every image even throughout 

large datasets. 

Existing methods (Nicholson and Glaeser, 2001) for automated particle selection aim at the 

simultaneous identification and classification of particles on the level of micrographs. The crucial 
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difference in our approach is to address these tasks separately. We see the major advantage of this 

strategy in the possibility to provide positive (particle) as well as negative (non-particle) samples 

that were derived directly from the dataset itself for the training of the classifier. Such sample 

images are not available prior to particle picking; only samples from previous datasets or 

unrelated references can be provided. The use of negative samples that resemble the actual types 

of non-particles present in a dataset contributes greatly to the specificity achieved by MAPPOS. 

Consequently, the preceding particle picking step can be highly sensitive (filter criteria can be 

less strict), because a sufficient specificity is ensured by the subsequent post-picking step. 

In this study, we demonstrated the applicability of MAPPOS to experimental cryo-EM data on 

the example of an E. coli 70S ribosome dataset. While the application of MAPPOS is probably 

most beneficial for unsymmetrical specimen since large numbers of particles are required for 

cryo-EM reconstructions in such cases, it remains to be shown that it is applicable to a broader 

range of particles. Notably, MAPPOS has already been successfully used for high-resolution 

reconstructions of 80S ribosomal complexes (Becker et al., 2012; Leidig et al., 2012). 

Current generation electron microscopes (e.g. FEI Titan Krios) generate up to 4,000 micrographs 

per day using automated data acquisition techniques (Otto Berninghausen & Ingo Daberkov, 

personal communication). For ribosomal samples this amounts to roughly 200,000 – 500,000 

particles per day. Automated particle picking and post-picking tools are therefore likely to 

become an integral part of cryo-EM processing pipelines. Manual classification of the E. coli 70S 

ribosome dataset used in this study required 3 – 4 working days although it comprised merely 

85,726 boxed images. In contrast, the classification using MAPPOS required less than a day – 

including the manual generation of the training dataset. Despite its high speed, the quality of the 

final 3D reconstruction was equivalent to that of the manually classified dataset. This 

demonstrates that MAPPOS is able to handle huge amounts of data at the same pace at which 

they are generated without impairing the quality of the resulting electron density maps. 
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